15 research outputs found

    De-Identification of French Unstructured Clinical Notes for Machine Learning Tasks

    Full text link
    Unstructured textual data are at the heart of health systems: liaison letters between doctors, operating reports, coding of procedures according to the ICD-10 standard, etc. The details included in these documents make it possible to get to know the patient better, to better manage him or her, to better study the pathologies, to accurately remunerate the associated medical acts\ldots All this seems to be (at least partially) within reach of today by artificial intelligence techniques. However, for obvious reasons of privacy protection, the designers of these AIs do not have the legal right to access these documents as long as they contain identifying data. De-identifying these documents, i.e. detecting and deleting all identifying information present in them, is a legally necessary step for sharing this data between two complementary worlds. Over the last decade, several proposals have been made to de-identify documents, mainly in English. While the detection scores are often high, the substitution methods are often not very robust to attack. In French, very few methods are based on arbitrary detection and/or substitution rules. In this paper, we propose a new comprehensive de-identification method dedicated to French-language medical documents. Both the approach for the detection of identifying elements (based on deep learning) and their substitution (based on differential privacy) are based on the most proven existing approaches. The result is an approach that effectively protects the privacy of the patients at the heart of these medical documents. The whole approach has been evaluated on a French language medical dataset of a French public hospital and the results are very encouraging

    Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial

    Get PDF
    Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≄6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Optical properties of small GaN/Al0.5Ga0.5N quantum dots grown on (11-22) GaN templates

    No full text
    GaN-Al0.5NGa0.5N quantum dots deposited on (11-22) planes have been grown by combining Molecular Beam Epitaxy and Metal Organic Vapour Phase Epitaxy. This combination is interesting for realization of ultraviolet operation light emitting diodes, lasers andsingle photon sources,
 (1,3) The growth of dots was achieved by MBE using ammonia as nitrogen precursor and growth interruption in ammonia less conditions to trigger corrugation of GaN and dot formation (4). The (11-22) GaN oriented peudosubstrate was realized by MOVPE starting from a M-plane oriented sapphire substrate. The orientation of the growth plane dictates in-plane anisotropies which are effectively found leading to a transition from isolated dots to nanochains - oriented along the direction as evidenced from Atomic Force Microscopy features or optical properties: polarization rates and temperature dependent measurements of the radiative recombination process for instance(5). We here restrict to small size isolated quantum dots and present innovative optical properties among which are micro-photoluminescence data versus pump power, polarization of the emitted photons at different temperatures. We also analyse the photoluminescence decay times and model our finding in the context of the effective mass approximation. The crystal field splitting is measured in Al 0.5NGa 0.5N lattice-matched to (11-2) oriented GaN by polarized microphotoluminecence under high photo- injection conditions

    In situ coupled mechanical/electrical/WAXS/SAXS investigations on ethylene propylene diene monomer resin/carbon black nanocomposites

    No full text
    International audienceIn situ coupled mechanical/electrical/WAXS/SAXS investigations on EPDM-based composite materials filled with carbon black (CB) have been performed under uniaxial tensile stretching. The time-resolved correlation between the electrical conductivity and the microstructural state of the composite reveals the mechanisms governing the structure/properties relationships with increasing deformation: orientation of the EPDM chains with reorganization of the CB network and ultimately, nano-cavitation. This involvement of different microstructural phenomena offers a comprehensive picture of the mechanisms underlying the non-monotonic evolution of the electrical conductivity with strain. At large deformations, the formation of nanovoids preceding the material fracture induces by a significant decrease in conductivity. Our study thus brings new light on the conductivity/strain relationships of carbon black filled elastomers. We envision potential applications in developing smart rubber materials where microstructural changes preceding material rupture can be monitored in situ by coupled electrical measurements

    A nitride-on-Silicon microdisk laser emitting at 275 nm and room-temperature

    No full text
    International audienceThe development of semiconductor lasers in the deep ultra-violet (UV) spectral range is attracting a strong interest, related to their multiple applications for optical storage, biochemistry or optical interconnects. UV-emitting ridge lasers usually embed nitride heterostructures grown on complex buffer layers or expensive substrates – an approach that cannot be extended to nano-photonics and microlasers. We demonstrate here the first deep UV microlaser by combining binary GaN/AlN thin quantum wells (QWs) grown on a silicon substrate and high quality factor microdisk resonators. Those microdisk lasers operate at 275nm at room temperature under optical pumping.The nitride heterostructures grown on silicon present a strong interest for nanophotonic devices emitting in the blue and UV range. The etching selectivity of the silicon substrate allows to realize free membrane photonic structures with high quality factors (Q) [1-3]. In the present microdisk resonators, the electromagnetic modes, the so-called Whispering-Gallery Modes (WGMs), present a low modal volume and Q factors of 6000 [4]. The difficulty in extending their lasing operation in the UV range mainly lies in the control of the active layer. Low defect density quantum wells grown on thick buffer layers or nitride substrates are usually employed for ridge lasers. Here we show that binary GaN/AlN ultra-thin quantum wells directly grown on a silicon substrate can maintain a large emission efficiency and lead to lasing at room temperature (Figure 1). This active layer can form free-standing membranes and is further compatible with future developments of nitride nanophotonic platforms on silicon

    Nitride-on-Silicon microdisks resonators for deep-UV laser emission at room-temperature

    No full text
    International audienceDeep ultra-violet semiconductor lasers have numerous applications for optical storage, biochemistry or optical interconnects. UV-emitting ridge lasers usually embed nitride heterostructures grown on complex buffer layers or expensive substrates – an approach that cannot be extended to nano-photonics and microlasers. We demonstrate here the first deep ultra-violet microlaser operating at 275nm at room temperature under optical pumping. It is based on binary GaN/AlN thin quantum wells (QWs) grown on a silicon substrate and embedded in microdisk resonators. Those QWs indeed combine UV-C emission with a good emission efficency even at room temperature thanks to the huge band offset beetwen GaN and AlN. They form the active layer of state-of-the-art microdisk resonators, which electromagnetic modes, the so-called Whispering-Gallery Modes (WGMs), present a low modal volume and a high quality factor (Q=6000). This active layer can form free-standing membranes and is further compatible with future developments of nitride nanophotonic platforms on silicon
    corecore